Ruthenium-Catalyzed Regioselective [2 + 2 + 2] Cyclotrimerization of Trifluoromethyl Group Substituted Internal Alkynes

Motoi Kawatsura,* Mitsuaki Yamamoto, Junya Namioka, Koji Kajita, Takuya Hirakawa, and Toshiyuki Itoh*

Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Koyama, Tottori 680-8552 Japan

kawatsur@chem.tottori-u.ac.jp; titoh@chem.tottori-u.ac.jp

Received December 20, 2010

LETTERS 2011 Vol. 13, No. 5 1001–1003

ORGANIC

ABSTRACT

It found that the $Ru_3(CO)_{12}$ coordinated with 2-(diphenylphosphino)benzonitrile (2-DPPBN) to effectively catalyze the [2 + 2 + 2] cyclotrimerization of the trifluoromethyl group substituted internal alkynes in high yields with up to >98% regioselectivity. Isolation of a ruthenacyclopentadiene was successful and confirmed that the complex is a reaction intermediate.

Trifluoromethyl group substituted benzene derivatives exhibit several interesting biological activities, and the efficient construction of such a compound is very important.¹ One of the most efficient synthetic methods of the benzene derivatives is the transition metal-catalyzed [2 + 2 + 2] cycloaddition of alkynes, and several examples have been reported.^{2,3} However, the [2 + 2 + 2] cycloaddition reaction of fluorine-containing alkynes is rare,⁴ and there are only two examples of the synthesis of trifluoromethyl group substituted benzene derivatives by the transition metal-catalyzed [2 + 2 + 2] cyclotrimerization of this group substituted internal alkynes.⁵ In 2002, Jones and colleagues reported the first example of a intermolecular [2 + 2 + 2] cyclotrimerization reaction of a trifluoromethylated

^{(1) (}a) Isanbor, C.; O'Hagan, D. J. Fluorine Chem. 2006, 127, 303– 319. (b) O'Hagan, D.; Rzepa, H. S. Chem. Commun. 1997, 645–652.

⁽²⁾ Recent reviews: (a) Galan, B. R.; Rovis, T. Angew. Chem., Int. Ed. 2009, 48, 2830–2834. (b) Gandon, V.; Aubert, C.; Malacria, M. Chem. Commun. 2006, 2209–2217. (c) Chopade, P. R.; Louie, J. Adv. Synth. Catal. 2006, 348, 2307–2327. (d) Kotha, S.; Brahmachary, E.; Lahiri, K. Eur. J. Org. Chem. 2005, 4741–4767. (e) Saito, S.; Yamamoto, Y. Chem. Rev. 2000, 100, 2901–2915. (f) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49–92.

⁽³⁾ For ruthenium-catalyzed [2 + 2+2] cycloaddition and/or cyclotrimerization, see: (a) Cadierno, V.; García-Garrido, S. E.; Gimeno, J. J. Am. Chem. Soc. 2006, 128, 15094–15095. (b) Yamamoto, Y.; Arakawa, T.; Ogawa, R.; Itoh, K. J. Am. Chem. Soc. 2003, 125, 12143–12160. (c) Rüba, E.; Schmid, R.; Kirchner, K.; Calhorda, M. J. J. Organomet. Chem. 2003, 682, 204–211. (d) Ura, Y.; Sato, Y.; Shiotsuki, M.; Kondo, T.; Mitsudo, T. J. Mol. Catal. A: Chem. 2004, 209, 35–39. (e) Yamamoto, Y.; Hattori, K.; Nishiyama, H. J. Am. Chem. Soc. 2006, 128, 8336–8340. (g) Yamamoto, Y.; Ishii, J.-i.; Nishiyama, H.; Itoh, K. J. Am. Chem. Soc. 2004, 126, 3712–3713. (h) Varela, J. A.; Castedo, L.; Saá, C. J. Org. Chem. 2003, 68, 8595–8598. (i) Peters, J.-U.; Blechert, S. Chem. Commun. 1997, 1983–1984.

^{(4) (}a) Arimitsu, S.; Fernández, B.; del Pozo, C.; Fustero, S.; Hammond, G. B. J. Org. Chem. 2008, 73, 2656–2661. (b) Tanaka, K.; Hara, H.; Nishida, G.; Hirano, M. Org. Lett. 2007, 9, 1907–1910. (c) Saito, S.; Kawasaki, T.; Tsuboya, N.; Yamamoto, Y. J. Org. Chem. 2001, 66, 796–802. (d) Saito, S.; Tanaka, T.; Koizumi, T.; Tsuboya, N.; Itagaki, H.; Kawasaki, T.; Endo, S.; Yamamoto, Y. J. Am. Chem. Soc. 2000, 122, 1810–1811.

Table 1. Ruthenium-Catalyzed Cyclotrimerization of	1-(4-
Methylphenyl)-3,3,3-trifluoropropyne $(1a)^a$	

ArCF ₃ 1a : Ar = 4-MeC ₆ H ₄	cat.[Ru/L] CH ₃ CN 80 °C, 12 h	$\operatorname{Ar}_{\operatorname{CF}_{3}}^{\operatorname{CF}_{3}}\operatorname{Ar}_{\operatorname{CF}_{3}}$	$F_{3}C$ Ar CF_{3} Ar CF_{3} Ar CF_{3}
		2a (unsymmetric)	3a (symmetric)
		Ŋ2	
[Ru-1]	2-DPPBN		
		vield ($(0/b)^b$

entry	[Ru/L]	of 2a and 3a	$2a:3a^c$
1	Cp*RuCl(cod)	<5	ND
2	[RuCp(CH ₃ CN) ₃]PF ₆	0	_
3	[RuCp*(CH ₃ CN) ₃]PF ₆	0	_
4	[Ru-1]	0	_
5	$\operatorname{Ru}_3(\operatorname{CO})_{12}$	35	95:5
6	Ru ₃ (CO) ₁₂ /10% PPh ₃	7	95:5
7	Ru ₃ (CO) ₁₂ /5% PPh ₃	56	95:5
8	$Ru_3(CO)_{12}/5\% P^n Bu_3$	32	90:10
9	Ru ₃ (CO) ₁₂ /5% DPPE	18	91:9
10	Ru ₃ (CO) ₁₂ /2.5% DPPE	42	78:22
11	Ru ₃ (CO) ₁₂ /5% 2-DPPBN	55	>98:2
12^d	Ru ₃ (CO) ₁₂ /5% 2-DPPBN	$84 (95)^e$	>98:2
13	Ru ₃ (CO) ₁₂ /10% 2-DPPBN	45	97:3

^{*a*} Reaction conditions: **1a** (0.2 mmol), 10 mol % for Cp*RuCl(cod), [RuCp(CH₃CN)₃]PF₆ and [RuCp*(CH₃CN)₃]PF₆, 5 mol % for [Ru-1], 3.3 mol % for Ru₃(CO)₁₂, 0.4 mL of CH₃CN (0.5 M). ^{*b*} Isolated yield. ^{*c*} Ratio was determined by ¹H and/or ¹⁹F NMR of the crude materials. ^{*d*} CH₃CN (0.1 mL, 2 M). ^{*e*} NMR yield is in parentheses.

internal alkyne.^{5a} They reported that the reaction was catalyzed by a nickel catalyst, and the trifluoromethyl group substituted benzene derivatives were quantitatively formed with a 70% regioselectivity. Very recently, Konno and Ishihara discovered that the rhodium catalyst produced the cyclotrimerized benzene derivatives in moderate to good yields with up to an 88% regioselectivity.^{5b} On the other hand, during the course of our research on ruthenium-catalyzed reactions⁶ and the stereoselective reaction of fluorine-containing compounds,⁷ we found that $Ru_3(CO)_{12}$ coordinated with 2-(diphenylphosphino)benzonitrile (2-DPPBN) and effectively catalyzed a [2 + 2 + 2] cyclotrimerization of the trifluoromethyl group substituted internal alkynes in high yields with an almost perfect regioselectivity.

sources listed in Table 1.⁸ Although [Ru-1] {dichlorobis(μ chloro)bis[(1,2,3,6,7,8-*η*)-2,7-dimethyl-2,6-octadiene-1, 8diyl]diruthenium},^{3a} Cp*RuCl(cod),^{3b,d-g} [RuCp(CH₃-CN)₃]PF₆^{3c} and [RuCp*(CH₃CN)₃]PF₆^{3h} are known as effective ruthenium catalysts for the trimerization of terminal alkynes, the reactions of **1a** by these ruthenium catalysts resulted in no reaction or very low yields (entries 1-4). On the other hand, we found that the $Ru_3(CO)_{12}^{9,10}$ formed the desired benzene derivatives 2a in 35% isolated yield with a 95% regioselectivity. The yield from the trimerization of 1a was still insufficient, but the regioselectivity was higher than that of previous reports. On the basis of this preliminary result, we confirmed that $Ru_3(CO)_{12}$ is a promising ruthenium precatalyst to produce the trifluoromethyl group substituted benzene derivative with a high regioselectivity. Therefore, we next attempted to optimize the reaction of **1a** by Ru₃(CO)₁₂ with several phosphine ligands. Typically, the reaction was carried out as follows: in the presence of 3.3 mol % of Ru₃(CO)₁₂ with a phosphine ligand (2.5, 5, or 10 mol %), an alkyne **1a** was mixed in CH₃CN at 80 °C for 12 h. The reaction by the addition of 10 mol % of PPh₃ (Ru/ $PPh_3 = 1:1$) decreased the yield to 7% (entry 6). However, an increased isolated yield (56%) was observed without reducing the regioselectivity when 5 mol % of PPh₃ (Ru/ $PPh_3 = 2:1$) was added to the reaction mixture (entry 7).¹¹ Other phosphine ligands, for example $P^n Bu_3$ or DPPE, were not effective for the cyclotrimerization of 1a (entries 8-10). Finally, we found that the reaction with 2-(diphenylphosphino)benzonitrile (2-DPPBN) gave the best result for the desired cyclotrimerization. The reaction of 3.3 mol % of Ru₃(CO)₁₂ with 5 mol % of 2-DPPBN exhibited the selective formation (>98% regioselectivity) of an unsymmetrical benzene derivative 2a in 55% yield (entry 11). Changing the concentration of the reaction mixture from 0.5 to 2 M significantly increased the yield, and we thus succeeded in obtaining 2a as a single regioisomer in an 84%isolated yield (95% NMR yield) (entry 12). Again, the reaction with 10 mol % of 2-DPPBN decreased both the vield and regioselectivity (entry 13), so the ratio of ruthenium to ligand (Ru/2-DPPBN = 2:1) is very important when forming the active ruthenium species.¹¹ We next examined the [2 + 2 + 2] cyclotrimerization of various trifluoromethylated internal alkynes 1b-i under the optimized reaction conditions, and the results are summarized in Table 2. For the reaction of 1c-e, which has an electronwithdrawing group at the para-position on the benzene ring, small amounts of symmetrical products 3c-e were formed

We screened ruthenium catalysis for [2 + 2+2] cycloaddition reaction of trifluoromethyl-substituted internal alkyne **1a** as the model substrate from among the commercial

^{(5) (}a) Müller, C.; Lachicotte, R. J.; Jones, W. D. *Organometallics* **2002**, *21*, 1975–1981. (b) Konno, T.; Moriyasu, K.; Kinugawa, R.; Ishihara, T. *Org. Biomol. Chem.* **2010**, *8*, 1718–1724.

^{(6) (}a) Kawatsura, M.; Kamesaki, K.; Yamamoto, M.; Hayase, S.;
Itoh, T. *Chem. Lett.* 2010, *39*, 1050–1051. (b) Kawatsura, M.; Ata, F.;
Hirakawa, T.; Hayase, S.; Itoh, T. *Tetrahedron Lett.* 2008, *49*, 4873–4875. (c) Kawatsura, M.; Ata, F.; Hayase, S.; Itoh, T. *Chem. Commun.* 2007, 4283–4285. (d) Kawatsura, M.; Ata, F.; Wada, S.; Hayase, S.;
Uno, H.; Itoh, T. *Chem. Commun.* 2007, 298–300.

^{(7) (}a) Kawatsura, M.; Hirakawa, T.; Tanaka, T.; Ikeda, D.; Hayase, S.; Itoh, T. *Tetrahedron Lett.* **2008**, *49*, 2450–2453. (b) Kawatsura, M.; Wada, S.; Hayase, S.; Itoh, T. *Synlett* **2006**, 2483–2485.

⁽⁸⁾ Konno, T.; Chae, J.; Kanda, M.; Nagai, G.; Tamura, K.; Ishihara, T.; Yamanaka, H. *Tetrahedron* **2003**, *59*, 7571–7580.

⁽⁹⁾ Ru₃(CO)₁₂ is known to react with hexafluoro-2-butyne and forms cyclopentadienone-ruthenium complex, see: Bruce, M. I.; Knight, J. R. *J. Organomet. Chem.* **1968**, *12*, 411–413.

⁽¹⁰⁾ Ru₃(CO)₁₂ is also an active catalyst for several types of [2 + 2+2] cycloadditions, see: Yamamoto, Y.; Itoh, K. In *Ruthenium in Organic Synthesis*; Murahashi, S.-I, Ed.; Wiley-VCH: Weinheim, 2004; pp 95–128.

⁽¹¹⁾ The ratio of Ru to phosphine (2:1) is crucial to attain both a high yield and regioselectivity, but the details are unknown at this time.

Table 2. Ru₃(CO)₁₂/2-DPPBN-catalyzed Cyclotrimerization of Trifluoromethylated Alkynes **1b**-**i**^{*a*}

entry	1	yield $(\%)^b$ of ${f 2}$ and ${f 3}$	ratio c of 2 :3
1	1b	92	>98:2
2	1c	77	93:7
3	1d	81	93:7
4	1e	78	95:5
5	1 f	81	>98:2
6	1g	84	>98:2
7	1h	85	>98:2
8	1i	trace	ND

^{*a*} Reaction conditions: **1** (0.2 mmol), $Ru_3(CO)_{12}$ (0.0066 mmol), and 2-DPPBN (0.010 mmol) in CH₃CN (0.1 mL) at 80 °C for 24 h. ^{*b*} Isolated yield. ^{*c*} Ratio was determined by ¹H and/or ¹⁹F NMR of the crude materials.

Scheme 1. Synthesis of Kuthenacyclopentatiene	iene 4
---	--------

(entries 2–4). On the other hand, the reaction of 1f-h produced unsymmetrical benzene derivatives 2f-h selectively in good yield (entries 5–7). Unfortunately, the reaction of 1i, bearing an *ortho*-substituted aromatic group, gave only a trace amount of the trimerization product (entry 8).¹²

We further examined the isolation of the reaction intermediate, which might be a ruthenacyclopentadiene.¹³ To our delight, we succeeded in obtaining a ruthenium complex 4 by the mixing of $Ru_3(CO)_{12}$, 2-DPPBN and the alkyne 1a (Scheme 1), then solved the structure based on an X-ray crystallographic analysis (Figure 1). In the complex, the 2-DPPBN ligand coordinated with the ruthenium metal as a monodentate ligand, while the nitrile group was not coordinated to the ruthenium. We ran the stoichiometric reaction of 4 with the alkyne 1f, then succeeded in obtaining the expected benzene derivative 5 in 47% isolated yield (Scheme 2). The

Figure 1. X-ray structure of ruthenacyclopentadine **4**. Hydrogen atoms have been omitted for clarity.

Scheme 2. Stoichiometric Reaction of Ruthenacyclopentadiene 4 with 1f, and Complex 4 Catalyzed Cyclotrimerization of 1f

yield was slightly low, but these results support the fact that the ruthenacyclopentadiene **4** is a reaction intermediate in the $Ru_3(CO)_{12}/2$ -DPPBN catalyzed intermolecular [2 + 2 + 2]cyclotrimerization of the trifluoromethylated internal alkynes **1a**. Furthermore, we confirmed that the complex **4** works as a catalyst for the cyclotrimerization reaction.

In conclusion, we demonstrated the $Ru_3(CO)_{12}/2$ -DPPBN catalyzed [2 + 2 + 2] intermolecular cyclotrimerization of trifluoromethylated alkynes and obtained the trifluoromethylated benzene derivatives in good yields with a high regioselectivity. We also succeeded in isolating a ruthenacyclopentadiene and confirmed that the complex is a reaction intermediate.

Supporting Information Available. Experimental details, characterization data and X-ray crystallographic data. This material is available free of charge via the Internet at http://pubs.acs.org.

⁽¹²⁾ The reaction of 1-phenyl-1-propyne gave a trace amount of trimerization products with a low regioselectivity.

⁽¹³⁾ Zhou, L.; Li, S.; Kanno, K.-i.; Takahashi, T. Heterocycles 2010, 80, 725–738.